Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712254

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

2.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713535

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

3.
Front Oncol ; 14: 1328844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606104

RESUMO

Metastatic triple-negative breast cancer (mTNBC) has the worst prognosis among breast cancer subtypes. Immune checkpoint inhibitors (ICIs) plus chemotherapy have promising survival benefits. Herein, we report a 51-year-old woman whose metastatic lesions were diagnosed as triple-negative subtype and who received tislelizumab plus eribulin treatment and achieved excellent efficacy. To our knowledge, this study is the first attempt to present tislelizumab in combination with eribulin for mTNBC treatment. New treatments resulting in prolonged survival and durable clinical responses would benefit mTNBC patients. Then, we summarize the possible influencing factors of the interaction between tislelizumab and eribulin.

4.
Biochem Biophys Res Commun ; 710: 149889, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581955

RESUMO

The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.


Assuntos
Neoplasias da Mama , Estruturas Metalorgânicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Linhagem Celular Tumoral
5.
Adv Sci (Weinh) ; : e2400665, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526194

RESUMO

The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.

6.
Anal Chem ; 96(9): 3898-3905, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387028

RESUMO

The effective applications of electrochemiluminescence (ECL) across various fields necessitate ongoing research into novel luminophores and ECL strategies. In this study, self-luminous flower-like nanocomposites (Eu-tcbpe-MOF) were prepared by coordination self-assembly using the aggregation-induced emission material 1,1,2,2-tetrakis(4-carboxyphenyl)ethylene (H4TCBPE) and Eu(III) ions as the precursors. Compared with the monomers and aggregates of H4TCBPE, Eu-tcbpe-MOF exhibits stronger ECL emission. Such enhanced electrochemiluminescence is due to coordination as the coordination-triggered electrochemiluminescence (CT-ECL) enhancement effect. In this study, a cubic-structured nanocomposite (Co9S8@Au@MoS2) was used as an efficient quencher, and a more sensitive ECL detection platform was achieved by two quenching mechanisms: resonance energy transfer and competitive consumption of coreactants. N,N-Diethylethanolamine (DBAE) was used as a coreactant, and DBAE has a faster electron transfer rate and stronger energy supply efficiency than the traditional anodoluminescent coreactant tripropylamine, which effectively improves the ECL signal intensity of Eu-tcbpe-MOF. Hence, a sandwich-type ECL immunosensor was prepared by employing a dual-quenching mechanism, utilizing Eu-tcbpe-MOF as the detection probe and Co9S8@Au@MoS2 as the quencher, achieving precise detection of carcinoembryonic antigen from 0.1 pg·mL-1 to 100 ng·mL-1 with a detection limit of 35.1 fg·mL-1.

7.
Cancer Causes Control ; 35(1): 55-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37540479

RESUMO

BACKGROUND: The use of antidepressants has increased over the years, but the relationship between antidepressant use and the risk of breast cancer is not uniform because of confounding factors. We aimed to assess the effect of antidepressants on breast cancer risk using a two-sample Mendelian randomization (MR) approach.stet METHODS: Secondary data analysis was performed on pooled data from genome-wide association studies based on single-nucleotide polymorphisms that were highly correlated with antidepressants, SSRI drugs, and serotonin and prolactin levels were selected as instrumental variables to evaluate the association between antidepressants and SSRI drugs and prolactin levels with breast cancer and ER+/ER- breast cancer. We then performed a test of the hypothesis that SSRI drugs elevate prolactin concentrations. We performed two-sample Mendelian randomization analyses using inverse variance weighting, MR-Egger regression, and weighted median methods, respectively. RESULTS: There was no significant risk association between antidepressant and SSRI use and the development of breast cancer, ER-positive or ER-negative breast cancer (P > 0.05), and serotonin concentration was not associated with breast cancer risk (P > 0.05). There was a positive causal relationship between prolactin levels and breast cancer (IVW, P = 0.02, OR = 1.058) and ER-positive breast cancer (Weighted median, P = 0.043, OR = 1.141; IVW, P = 0.009, OR = 1.125). Results in SSRI medication and prolactin levels showed no association between SSRI analogs and prolactin levels (P > 0.05). CONCLUSION: Large MR analysis showed that antidepressants as well as SSRI drugs were not associated with breast cancer risk and the SSRI-prolactin-breast cancer hypothesis did not hold in our analysis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Prolactina , Serotonina , Polimorfismo de Nucleotídeo Único , Antidepressivos/efeitos adversos
8.
Biosens Bioelectron ; 248: 115973, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150797

RESUMO

Hybridization chain reaction (HCR) based enzyme-free amplification techniques have recently been developed for the visualization of intracellular messenger RNA (mRNA). However, the slow kinetics and potential interference with the intricate biological environments hinder its application in the clinic and in vivo. Herein, we designed a nanofirecracker probe-based strategy using intramolecular hybridization chain reaction (IHCR) amplifier for rapid, efficient, sensitive, specific detection and imaging of survivin mRNA both in vitro and vivo. Two probes, HP1 and HP2, in IHCR were simultaneously incorporated into a DNA nanowire scaffolds to bring HP1 and HP2 to close proximity on the assembled nanowire scaffolds. Empowered by the DNA nanowire scaffolds and spatial confinement effect, the nanofirecracker probe-based IHCR sensing system exhibited improved biostability, accelerated reaction kinetics, and enhanced signal amplification. This new strategy has been successfully applied to imaging mRNA in both cultured cells and in mice. Importantly, this novel sensing method was capable of detecting survivin mRNA in clinical blood samples from subjects with colorectal cancer. Thus, this novel nanofirecracker probe-based IHCR strategy holds great potential in advancing both biomedical research and in molecular diagnostics.


Assuntos
Técnicas Biossensoriais , Humanos , Animais , Camundongos , RNA Mensageiro/genética , Survivina/genética , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico/métodos , DNA/genética , Proteínas Cromossômicas não Histona/genética
9.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077058

RESUMO

Hematopoietic stem cell (HSC) transplantation using umbilical cord blood (UCB) is a potentially life-saving treatment for leukemia and bone marrow failure but is limited by the low number of HSCs in UCB. The loss of HSCs after ex vivo manipulation is also a major obstacle to gene editing for inherited blood disorders. HSCs require a low rate of translation to maintain their capacity for self-renewal, but hematopoietic cytokines used to expand HSCs stimulate protein synthesis and impair long-term self-renewal. We previously described cytokine-free conditions that maintain but do not expand human and mouse HSCs ex vivo. Here we performed a high throughput screen and identified translation inhibitors that allow ex vivo expansion of human HSCs while minimizing cytokine exposure. Transplantation assays show a ~5-fold expansion of long-term HSCs from UCB after one week of culture in low cytokine conditions. Single cell transcriptomic analysis demonstrates maintenance of HSCs expressing mediators of the unfolded protein stress response, further supporting the importance of regulated proteostasis in HSC maintenance and expansion. This expansion method maintains and expands human HSCs after CRISPR/Cas9 editing of the BCL11A+58 enhancer, overcoming a major obstacle to ex vivo gene correction for human hemoglobinopathies.

10.
Wien Klin Wochenschr ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947877

RESUMO

BACKGROUND: Cannabis use is increasing annually but the relationship between cannabis use and cancer incidence is not uniform because of confounding factors. We aimed to assess the effect of cannabis use on cancer risk using a two-sample Mendelian randomization (MR) approach. METHODS: Secondary data analyses were performed on pooled data based on Genome-Wide Association Study (GWAS), selecting data from the ICC and UK-Biobank and 23andMeInc lifetime cannabis use and cannabis use disorder related to the substance use disorders working group from the Psychiatric Genomics Consortium, then selecting highly correlated SNPs as instrumental variables. The substance use disorders working group, iPSYCH, and deCODE GWAS data, and then highly correlated SNPs were selected as instrumental variables for two-sample Mendelian randomization analyses using inverse variance weighting, MR-Egger regression, and weighted median, respectively, to evaluate the relationship between lifetime cannabis use and nine tumors, and subsequently analyzed these results in the same way using cannabis use disorders. RESULTS: The risk of all cancers except breast cancer was not associated with lifetime cannabis use. Our inverse variance weighting method found that lifetime marijuana use reduced the breast cancer risk (P = 0.016, odds ratio [OR] = 0.981), and we subsequently conducted analyses of cannabis use disorders and cancer risk, which showed that cannabis use disorders elevated the risk of breast cancer (P = 0.007, OR = 1.007) as well as the risk of lung cancer (P = 0.014, OR = 1.122). CONCLUSION: Large MR analyses suggest that lifetime cannabis use may reduce breast cancer risk, but cannabis use disorder exacerbates the risk of breast and lung cancer. The mechanisms responsible for this outcome remain to be investigated.

11.
Front Pharmacol ; 14: 1277283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954842

RESUMO

Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.

12.
Breast Cancer Res ; 25(1): 132, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915093

RESUMO

BACKGROUND: Several studies have indicated that magnetic resonance imaging radiomics can predict survival in patients with breast cancer, but the potential biological underpinning remains indistinct. Herein, we aim to develop an interpretable deep-learning-based network for classifying recurrence risk and revealing the potential biological mechanisms. METHODS: In this multicenter study, 1113 nonmetastatic invasive breast cancer patients were included, and were divided into the training cohort (n = 698), the validation cohort (n = 171), and the testing cohort (n = 244). The Radiomic DeepSurv Net (RDeepNet) model was constructed using the Cox proportional hazards deep neural network DeepSurv for predicting individual recurrence risk. RNA-sequencing was performed to explore the association between radiomics and tumor microenvironment. Correlation and variance analyses were conducted to examine changes of radiomics among patients with different therapeutic responses and after neoadjuvant chemotherapy. The association and quantitative relation of radiomics and epigenetic molecular characteristics were further analyzed to reveal the mechanisms of radiomics. RESULTS: The RDeepNet model showed a significant association with recurrence-free survival (RFS) (HR 0.03, 95% CI 0.02-0.06, P < 0.001) and achieved AUCs of 0.98, 0.94, and 0.92 for 1-, 2-, and 3-year RFS, respectively. In the validation and testing cohorts, the RDeepNet model could also clarify patients into high- and low-risk groups, and demonstrated AUCs of 0.91 and 0.94 for 3-year RFS, respectively. Radiomic features displayed differential expression between the two risk groups. Furthermore, the generalizability of RDeepNet model was confirmed across different molecular subtypes and patient populations with different therapy regimens (All P < 0.001). The study also identified variations in radiomic features among patients with diverse therapeutic responses and after neoadjuvant chemotherapy. Importantly, a significant correlation between radiomics and long non-coding RNAs (lncRNAs) was discovered. A key lncRNA was found to be noninvasively quantified by a deep learning-based radiomics prediction model with AUCs of 0.79 in the training cohort and 0.77 in the testing cohort. CONCLUSIONS: This study demonstrates that machine learning radiomics of MRI can effectively predict RFS after surgery in patients with breast cancer, and highlights the feasibility of non-invasive quantification of lncRNAs using radiomics, which indicates the potential of radiomics in guiding treatment decisions.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , RNA Longo não Codificante/genética , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Receptores Proteína Tirosina Quinases , Estudos de Coortes , Estudos Retrospectivos , Microambiente Tumoral
13.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759479

RESUMO

The Wnt signaling pathway is a highly conserved regulator of metazoan development and stem cell maintenance. Activation of Wnt signaling is an early step in diverse malignancies. Work over the past four decades has defined a "canonical" Wnt pathway that is initiated by Wnt proteins, secreted glycoproteins that bind to a surface receptor complex and activate intracellular signal transduction by inhibiting a catalytic complex composed of the classical tumor suppressor Adenomatous Polyposis Coli (APC), Axin, and Glycogen Synthase Kinase-3 (GSK-3). The best characterized effector of this complex is ß-catenin, which is stabilized by inhibition of GSK-3, allowing ß-catenin entrance to the nucleus and activation of Wnt target gene transcription, leading to multiple cancers when inappropriately activated. However, canonical Wnt signaling through the APC/Axin/GSK-3 complex impinges on other effectors, independently of ß-catenin, including the mechanistic Target of Rapamycin (mTOR), regulators of protein stability, mitotic spindle orientation, and Hippo signaling. This review focuses on these alternative effectors of the canonical Wnt pathway and how they may contribute to cancers.


Assuntos
Polipose Adenomatosa do Colo , Via de Sinalização Wnt , Animais , Quinase 3 da Glicogênio Sintase , Proteína Axina , beta Catenina
14.
Stress Biol ; 3(1): 39, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698658

RESUMO

Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases. Developing blast-resistant rice cultivars represents the most economical and environmentally friend strategy for managing the disease. In our previous study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the resistance gene Piz-t gene-mediated resistance response to infection in two contrasting rice genotypes of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and its wild-type Nipponbare (NPB). Here, from the comparisons of differentially expressed proteins (DEPs) of NPB-Piz-t to the avirulent isolate KJ201 (KJ201-Piz-t)and the virulent isolate RB22 (RB22-Piz-t) with mock-treated NPB-Piz-t (Mock-Piz-t), NPB to the virulent isolate KJ201(KJ201-NPB) and RB22 (RB22-NPB) with mock-treated NPB (Mock-NPB), 1, 1, and 6 common DEPs were, respectively, identified at 24, 48 and 72 h post-inoculation (hpi) in the susceptible comparisons of RB22-Pizt/Mock-Piz-t, KJ201-NPB/Mock-NPB, and RB22-NPB/Mock-NPB, involving in gi|54,290,836 and gi|59,800,021 were identified in the resistance comparison KJ201-Piz-t/Mock-Piz-t at 48 and 72 hpi respectively. Moreover, four genes of Os01g0138900 (gi|54,290,836), Os04g0659300 (gi|59,800,021), Os09g0315700 (gi|125,563,186) or Os04g0394200 (gi|21,740,743) were knocked out or overexpressed in NPB using gene over-expression and CRISPR/Cas9 technology, and results verified that the Os01g0138900 obviously affected the rice blast resistance. Further, expression and targeted metabolomics analysis illuminated the resistance response of cysteine-containing substances as gi|59,800,021 under blast infection. These results provide new targets for basal resistance gene identification and open avenues for developing novel rice blast resistant materials.

15.
Sci Rep ; 13(1): 13278, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587146

RESUMO

Resveratrol, curcumin, and quercetin are the secondary metabolites from medicinal food homology plants, that have been proven their potency in cancer treatment. However, the antitumor effect of a single component is weak. So, herein, we designed an antitumor compound named RCQ composed of resveratrol, curcumin, and quercetin. This study examined the effect on tumorigenesis and development of 4T1 breast cancer-bearing mice following administering RCQ by intragastric administration. RCQ increased the recruitment of T cells and reduced the accumulation of neutrophils and macrophages in the tumor microenvironment. Meanwhile, RCQ suppressed the development of tumor-infiltrating lymphocytes into immunosuppressive cell subpopulations, including CD4+ T cells to T helper Type 2 type (Th2), tumor-associated neutrophils (TANs) to the N2 TANs, and tumor-associated macrophages (TAMs) cells to M2 TAMs. RCQ reversed the predominance of immunosuppressive infiltrating cells in the tumor microenvironment and tipped the immune balance toward an immune activation state. In vitro the study showed that RCQ significantly increased reactive oxygen species (ROS), reduce mitochondrial membrane potentials in cancer cells, and modulate pro-apoptotic Bcl-2 family members. In conclusion, RCQ can promote the ROS apoptosis mechanism of tumor cells and alleviate immunosuppression of the tumor microenvironment to enhance the anti-tumor effect.


Assuntos
Curcumina , Neoplasias Mamárias Animais , Animais , Camundongos , Curcumina/farmacologia , Resveratrol/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Microambiente Tumoral , Espécies Reativas de Oxigênio , Terapia de Imunossupressão , Imunossupressores
16.
J Med Chem ; 66(17): 11965-11984, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37597216

RESUMO

A series of heterocyclic ring-fused derivatives of 20(S)-protopanaxadiol (PPD) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Among these compounds, 33 (SH491, IC50 = 11.8 nM) showed the highest potency with 100% inhibition at 0.1 µM and 44.4% inhibition at an even lower concentration of 0.01 µM, which was much more potent than the lead compound PPD (IC50 = 10.3 µM). Cytotoxicity tests indicated that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation was not due to their cytotoxicity. Interestingly, SH491 also exhibited a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. Mechanistic studies revealed that SH491 inhibits the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, CTSK, MMP-9, and ATPase v0d2. In vivo, SH491 could dramatically decrease the ovariectomy-induced osteoclast activity and relieve osteoporosis obviously. Thus, these PPD derivatives could be served as promising leads for the development of novel antiosteoporosis agents.


Assuntos
Adenosina Trifosfatases , Osteoporose , Feminino , Humanos , Osteoclastos , Osteogênese , Osteoporose/tratamento farmacológico
17.
Adv Sci (Weinh) ; 10(27): e2302967, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439462

RESUMO

Tumor extracellular matrix (ECM) not only forms a physical barrier for T cells infiltration, but also regulates multiple immunosuppressive pathways, which is an important reason for immunotherapy failure. The cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway plays a key role in activating CD8+ T cells, maintaining CD8+ T cells stemness and enhancing the antitumor effect. Herein, a zinc-organometallic framework vaccine (ZPM@OVA-CpG) prepared by self-assembly, which achieves site-directed release of Zn2+ in dendritic cell (DC) lysosomes and tumor microenvironment under acidic conditions, is reported. The vaccine actively targets DC, significantly enhances cGAS-STING signal, promotes DC maturation and antigen cross-presentation, and induces strong activation of CD8+ T cells. Meanwhile, the vaccine reaches the tumor site, releasing Zn2+ , significantly up-regulates the activity of matrix metalloproteinase-2, degrades various collagen components of tumor ECM, effectively alleviates immune suppression, and significantly enhances the tumor infiltration and killing of CD8+ T cells. ZPM@OVA-CpG vaccine not only solves the problem of low antigen delivery efficiency and weak CD8+ T cells activation ability, but also achieves the degradation of tumor ECM via the vaccine for the first time, providing a promising therapeutic platform for the development of efficient novel tumor vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Metaloproteinase 2 da Matriz/metabolismo , Células Dendríticas , Zinco/metabolismo , Preparações de Ação Retardada/metabolismo , Neoplasias/tratamento farmacológico , Imunoterapia , Nucleotidiltransferases/metabolismo , Microambiente Tumoral
18.
Biomed Pharmacother ; 165: 115096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421781

RESUMO

Drug resistance represents one of the greatest challenges in cancer treatment. Cancer stem cells (CSCs) are thought to be the major cause of failure in cancer therapy due to their considerable resistance to most chemotherapeutic agents, resulting in tumor recurrence and eventually metastasis. Here, we report a treatment strategy for osteosarcoma using hydrogel-microspheres (Gel-Mps) complex mainly composed of collagenase (Col) and PLGA microspheres (Mps) carrying Pioglitazone (Pio) and Doxorubicin (Dox). Col was encapsulated in the thermosensitive gel to preferentially degrade tumor extracellular matrix (ECM), ensuring subsequent drug penetration, while Mps with Pio and Dox were co-delivered to synergistically inhibit tumor growth and metastasis. Our results showed that the Gel-Mps dyad functions as a highly biodegradable, extremely efficient, and low-toxic reservoir for sustained drug release, displaying potent inhibition of tumor proliferation and subsequent lung metastasis. Selective PPARγ agonist Pio reversed drug resistance to Dox by significantly down-regulating the expression of stemness markers and P-glycoprotein (P-gp) in osteosarcoma cells. The Gel@Col-Mps@Dox/Pio exhibited advanced therapeutic efficacy in vivo, demonstrating its great potential to serve a novel osteosarcoma therapy, which not only inhibits the growth of, but also attenuates the stemness of osteosarcoma. The dual effects reinforce the sensitivity and efficacy of chemotherapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Hidrogéis/uso terapêutico , Microesferas , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral
19.
J Ethnopharmacol ; 317: 116778, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37328082

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Kushen (Sophora flavescens Aiton) Injection (CKI) is a Chinese herbal injection made from extracts of Kushen and Baituling (Heterosmilax japonica Kunth), containing matrine (MAT), oxymatrine (OMT) and other alkaloids with significant anti-tumor activity, and is widely used as an adjuvant treatment for cancer in China. AIM OF THE STUDY: The existing systematic reviews/meta-analyses (SRs/MAs) were re-evaluated to provide a reference for the clinical application of CKI. MATERIALS AND METHODS: SRs/MAs of CKI adjuvant therapy for cancer-related diseases were searched in four English language databases: PubMed, Embase, Web of Science, and Cochrane Library, all from the time of database construction to October 2022. 5 researchers independently conducted literature search and identification according to the inclusion criteria, and the data of the final literature were independently extracted, and finally the AMSTAR 2 tool, PRISMA statement and GRADE classification were used to evaluate the methodological quality of the included SRs/MAs, the degree of completeness of reporting and the quality of evidence for outcome indicators. Database registration: PROSPERO ID:CRD42022361349. RESULTS: Eighteen SRs/MAs were finally included, with studies covering non-small cell lung cancer, primary liver cancer, gastric cancer, colorectal cancer, breast cancer, head and neck tumors, and cancer-related bone pain. The evaluation showed that the methodological quality of the included literature was extremely low, but most of the literature reported relatively complete entries; nine clinical effectiveness indicators for non-small cell lung cancer and digestive system tumors were rated as moderate in the GRADE quality of evidence, and the quality of other outcomes was low to very low. CONCLUSION: CKI is a potentially effective drug for the adjuvant treatment of neoplastic diseases and may be more convincing for the adjuvant treatment of non-small cell lung cancer and digestive system tumors; however, due to the low methodological and evidentiary quality of the current SRs, their effectiveness needs to be confirmed by more high-quality evidence-based medical evidence.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Revisões Sistemáticas como Assunto
20.
Drug Deliv Transl Res ; 13(11): 2885-2902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37149557

RESUMO

Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Animais , Camundongos , Nanopartículas/química , Quempferóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Solubilidade , Polietilenoglicóis/química , Tamanho da Partícula , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA